A Discrete Differential Forms Framework for Computational Electromagnetism

نویسندگان

  • P. Castillo
  • R. Rieben
چکیده

In this article, we present a computational framework for solving problems arising in electromagnetism. The framework is derived from a modern geometrical approach and is based on differential forms (or p-forms). These geometrical entities provide a natural framework for modeling of physical quantities such as electric potentials, electric and magnetic fields, electric and magnetic fluxes, etc. We have implemented an object oriented class library, called FEMSTER. The library is designed for high order finite element approximations. In addition, it can be expanded by including user-defined data types or by deriving new classes. Finally, the versatility of the software is shown through different simulations. keyword: High order finite element, H (div) and H (curl) conforming methods, Computational electromagnetism, Object oriented programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite elements in computational electromagnetism

This article discusses finite element Galerkin schemes for a number of linear model problems in electromagnetism. The finite element schemes are introduced as discrete differential forms, matching the coordinate-independent statement of Maxwell’s equations in the calculus of differential forms. The asymptotic convergence of discrete solutions is investigated theoretically. As discrete different...

متن کامل

Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms

In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining techniques from variational integrators and discrete differential forms. This leads to a general family of variational, multisymplectic numerical methods for solving Maxwell’s equations that automatically preserve key symmetries and invariants. In doing so, we demonstrate ...

متن کامل

Invariant functions for solving multiplicative discrete and continuous ordinary differential equations

In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...

متن کامل

A continuous approximation fitting to the discrete distributions using ODE

The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...

متن کامل

Anil N . Hirani In Partial

The language of modern mechanics is calculus on manifolds, and exterior calculus is an important part of that. It consists of objects like differential forms, general tensors and vector fields on manifolds, and operators that act on these. While the smooth exterior calculus has a long history going back to Cartan, Lie, Grassmann, Hodge, de Rham and many others, the need for a discrete calculus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006